

Session 1: Disease clustering to guide trial design and analysis

Modelling at a product level as a way to test applicability and move forward to future recommendations

Roser Vives, Caridad Pontes and Arantxa Sancho

O.B. members of the WP5 (UAB)

Zaandam, 18-19th September 2017

1) The applicability and potential value of novel methodology developed within the ASTERIX project within four groups of methods for six condition clusters (UMCU): *4 examples per cluster*

The four main method groups:

- 1. Innovative designs
- 2. Level of evidence
- 3. Study endpoints & statistical analysis
- 4. Evidence synthesis

Six disease clusters have been created:

- 1. Acute: single episodes
- 2. Acute: repeated episodes
- 3. Chronic: stable/slow progression
- 4. Chronic: progressive, one system/organ
- 5. Chronic: progressive, multiple systems/organs
- 6. Chronic: staged conditions

2) Simulations or modeling at a product level based on conclusions from UMCU report (*1 example per cluster*)

3) Discussion on the (potential) ethical, practical and regulatory impact of new methodology on drug development

4) Recommendations

Simulations based on conclusions from UMCU report (1 example per cluster)

CLUSTER	EXAMPLES
Acute single episodes	Defitelio for the treatment of hepatic venooclusive disease
Repeated acute episodes	llaris for the treatment of cryopirine periodic syndromes
Chronic stable/slow progression	Revestive for the treatment of Short Bowel Syndrome
Chronic progressive led by one system/organ	Soliris for the treatment of Nocturnal Paroxysmal Hemoglobinuria
Chronic progressive multiorgan/symtem	Fabrazyme for the long-term ERT in patients with Fabry disease
Chronic staged conditions	Opsumit for the treatment of pulmonary hypertension

Clinical Development Plan

Fabrazyme® (agalsidase beta)

Clinical development for the long-term enzyme replacement therap confirmed diagnosis of Fabry disease

۱.	Index
	Introduction
	2.1. Background
	2.1.1. Disease and currently available alternatives4
	2.1.2. Rationale for the development4
	2.2. Scope of development
	2.2.1. Target product profile5
3.	General investigational plan5
	3.1. Objective (s) of the development
4.	Assessment of applicability of methods5
	4.1. Representativity of Fabrazyme within the cluster
	4.2. Applicability of novel methodologies based on UMCU report
5.	Actual development plan for Fabrazyme
	5.1. Safety and tolerability
	5.2. Pharmacokinetics
	5.3. Proof of activity/dose finding
	5.4. Pivotal evidence
	5.5. Supportive confirmatory efficacy and safety data
	5.6. Total patient exposure in the target indication
	5.7. Study outlines
	5.7.1. Dose-finding9
	5.7.2. Pivotal study11
	5.8. Uncertainties/weaknesses identified16
6.	Alternative development plans16
	6.1. Option 1
	6.2. Option 2
	6.3. Option 3
	Analysis of the practical, ethical and regulatory impact
	Recommendations

Introduction

Background information on Fabry Disease (FD)

- ultrarare disease (500-2000 patients in EU)
- inherited enzyme deficiency, chronic life-lasting disease
- multiorgan/system damage due to GL3 (substrate) deposit: heterogeneous involvement of skin, nervous, renal, heart, hepatic
- No SOC

Rationale for the development of Fabrazyme in FD

• Strong: ERT

Scope of development

• Fabrazyme in the long-term ERT in patients with Fabry Disease

Actual clinical development plan for Fabrazyme in FD

Proof of activity/dose finding

Study FB9702-01 (US), a phase I/II supportive, dose- finding 15 patients testing 5 groups of doses (5 infusions)

PEP: GL3 plasma clearance ; SEP: GL3 clearance in endothelial vasculature, tissues

Pivotal evidence

AGAL-1- 002-98 (US, EU), a phase III RCT, DB, Pl-C, conducted in 58 patients (29 vs 29): 0 or 1q2w, for up to 20 wks, followed by OLE Study AGAL-005-99 with additional 18 months FU, all in active treatment.

PEP: GL3 clearance from the capillary endothelium of the kidney (score 0, in a 0-3 scale)

SEP: GL3 inclusions in the capillary endothelium of heart, kidney and skin; kidney tissue and urinary GL3 levels; McGill pain questionnaire; QoL, change in GFR, neuropathy impairment, autonomic function status

Results:

PEP: 69% vs 7% rate of responders

SEP:

Statistically significant differences in all endpoints based on GL3 clearance from capillary endothelium of heart, kidney and skin, from kidney and heart tissues, and from plasma

No SS differences in pain reduction, QoL, renal function

Actual clinical development plan for Fabrazyme in FD

Uncertainties and weaknesses identified

- Demonstration of efficacy based on PD markers (reduction of sphingolipids in the target organs) with a complete absence of clinical endpoints, i.e. symptoms, function, etc. Therefore, there were uncertainties on the extent to which PD changes translate into clinical outcomes.
- Changes in symptoms/function are infrequent and highly variable. Clinical trials main limitation
 was poor sensitivity to assess changes in symptomatic/functional endpoints: none of the clinical
 parameters investigated as SEP did reach SS improvements/show changes at all.
- Inference on the potential benefit of the product is assumed to derive from the hypothesis and physiopathology.
- Additional long- term efficacy and safety data were required as post-authorization commitments.
- From other information on the disease and trials with similar treatments, it can be derived that patients with more advanced disease may be more responsive to treatment, so that clinical changes may be quantified.

Assessment on applicability of methods based on UMCU report

- <u>Applicable:</u>
 - Long-short term outcomes:
 - o Sequential design for small populations
 - o Bayesian sample size re estimation using powers prior.
 - o GAS
 - o Minimisation or stratification strategies

- Might be applicable:

- o Multi-arm group sequential designs with a simultaneous stopping rule
- **o** Dynamic borrowing through empirical power priors that control type I error

- <u>Not applicable (with the parameters of clinical development of Fabrazyme):</u>

- o delayed start randomization,
- **o** sample size reassessment and hypothesis testing in adaptive survival trials
- o fallback tests for co-primary endpoints,
- **o** optimal exact tests for multiple binary endpoints
- **o** simultaneous inference for multiple marginal GEE models

Study outline for alternative scenario 3

Title of study: ALTERNATIVE AGAL-1-002-98 (simulated Option 3) : fallback test for co-primary endpoints + enrichment

2 Investigators (Study center):

Studied period:

O

4

5

3 First Patient Enrolled 14 March 1999

Last Patient Completed 04 February 2000

Objectives

Primary:

The primary objective of the study will be to evaluate the safety and efficacy of recombinant human α-galactosidase (r-hα GAL) compared to placebo for the treatment of patients with Fabry disease.

Secondary:

Secondary objectives of the study include assessment of the efficacy of r-ha GAL compared to placebo based on changes from Baseline to Visit 11 (Week 20) of at least one of the following variables in revel function (creatining classes). Bedily

of the following variables: in renal function (creatinine clearance, 24h proteinuria), Bodily Pain Domain of the SF36, and the proportion of patients with score 0 in the composite score of GL-3 inclusions in the capillary endothelium (vasculature) of the kidney, skin, and heart.

Changes in the McGill Pain Questionnaire (short form) will be secondary, but it is unexpected that differences may be detected with the anticipated sample size and time of follow-up. The change from Baseline to Visit 11 (Week 20) in composite score of GL-3 levels, as measured by Enzyme Linked Immunosorbant Assay (ELISA) in kidney tissue and urine, will be also a secondary objective.

Design:

Multinational, multicenter, placebo-controlled, double-blind, randomized study of patients with a current diagnosis of Fabry disease who have had no prior treatment with r-h α GAL. Patients will receive approximately 1.0 mg/kg (0.9 to 1.1 mg/kg) of r-h α GAL or placebo every 2 weeks for 20 weeks (11 Patient Visits) for a total of 11 infusions of study medication. Twenty- eight additional days will be allowed for some of the final safety and efficacy procedures associated with Visit 11 (Week 20). Therefore, the total duration that a patient will be involved in the study after the first infusion will be up to 168 days.

Analysis of the practical, ethical and regulatory impact

Method assessed:	Yes	No	Depends, or not fully	Comments	
Practical considerat	tions:				Regula
 May reduce requirement 		ze			•
					•
 May shorten completion 	time to :	study			•
 May ease red 	cruitmen	t			
Statistical assessme	ent:				
 Improves int 	ernal val	idity			•
 Increases sta 	ability of	estima	ates		
 Increases set 	nsibility f	to cha	nges		Ethical
 Compliant w 	ith				• •
predetermin	ation				• 1
 Consistency 	(discuss)				1
Robustness	of metho	d (disc	uss)		• •
 Protection a errors (discu 		pelan	nd II		i
enors (disco	133)				•

Regula	atory assessment:	
•	Risk of bias and credibility	
•	External validity (discuss)	
•	Therapeutic positioning and comparisons	
•	Informative on relevance and clinical impact	
•	Suitable information for risk- benefit balance	
Ethica	l assessment:	
•	May minimise risks	
•	May maximize access to treatment	
•	May minimise unnecessary exposure to ineffective treatments	
•	Considers patient input	

Alternative development plan (Option 1)

Sequential design for small populations (PEP: ClCr + enrichment)

Impact on practical considerations	May reduce sample size (30%?)and shorten time to completion, but recruitment might be more challenging: enriched/ open new centers
Impact on ethical aspects	May minimize exposure to the experimental arm and to placebo, thus minimizing potential risks. May delay access to treatment for patients already available.
Impact on statistical aspects	May improve internal validity and sensitivity to changes. By contrary, may reduce stability of estimates (IA), need to control for alpha error
Impact on regulatory assessment	May improve assessment of relevance and clinical impact Enriched population: weak impact on external validity Negative impact on the extent of the safety database

- Practical advantages counterbalanced by the fact that patients are already available.
- General ethical advantages confronted with a delay in access to treatment to patients not enrolled/excluded
- May reduce the extent of an already limited safety database.
- In summary, advantages are not so relevant in this particular case

Alternative development plan (Option 2)

Dose-finding with multi-arm multi-stage trial with a simultaneous stopping rule (PEP change in GL3 urine levels)

Impact on practical considerations	May shorten time to completion, but no effect at all on sample size requirements or to ease recruitment
Impact on ethical aspects	May minimize exposure to an ineffective treatment
Impact on statistical aspects	May improve robustness of the dose-selection strategy
Impact on regulatory assessment	No effect at all, if any negative on the extent of the safety database

- It may minimize exposure to ineffective treatments, reduce time to completion, but given the little room for improvement this is not deemed a major contribution.
- May improve credibility of the dose-finding, but does not solve the main uncertainties identified

In summary, the two first alternative options are based on recommendations on applicability of novel methodologies to the studies already conducted.

An alternative approach could be going beyond the actual development and modify it as much as possible, i.e. study population, number and type of endpoints, etc, so that the options to apply novel methodologies increase.

The example chosen is a good one to exemplify this approach, as an attempt to improve the actually conducted development plan.

Considerations -Heterogeneity of the disease, with involvement of skin, kidney, heart, peripheral nervous system

-Good dynamic markers: association with clinical outcome measures not well established

including clinical n altiple endpoints outcome measures (symptomatic changes, functional and QoL,) and histological changes may provide a more convincing (clinically relevant) demonstration of efficacy.

But...

Considerations II

	Sample size per group	Differences Active vs Placebo*	SD pooled	Effect Size
Fabrazyme				
Primary Outcome: Grade 0 at week 20	8-9	-69%		
Secondary outcomes:				
sensory pain score	7715	0.3	6.65	0.045
affective pain score	520	0.4	2.3	0.174
total pain score	1774	0.8	8.5	0.094
visual analog scale score	884	-0.2	1.5	0.133
present pain intensity	639	0.4	2.55	0.157

Table 55. GFR (mean ± st. dev) in AGAL-1-002-98 and at 6 months of AGAL-005-99

Trial	Visit	Statistic	Treatme	nt group
			placebo	r-hαGal
		N	28	29
AGAL-11-	Baseline		97 ± 35	82 ± 22
002-98		N	23	21
	visit 11	Mean	108 ± 39	93 ± 34
			placebo/	r-hαGal/
			r-hαGal	r-haGal
AGAL-	6-month	N	26	23
005-99		Mean	117 ± 41	82 ± 30

prover specific sector				
Replagal				
Creatinine Clearance; 6 Month Data. TKT003	24	-18.1	21.653	0.836
Glomerular Filtration Rate; 6 Month Data				
TKT003	48	-11	18.93	0.581
TKT010	1749	1.2	12.66	0.095
Standard Renal Histopathology: Effects of Replagal				
Normal Glomeruli	11	-0.241	0.19	1.268
Fraction of Glomeruli with Mesangial Widening	9	-0.29	0.2	1.45
The Effects of Replagal on Cardiac Disease TKT005				
Cardica GB3	47	-0.18	0.306	0.588
Left Ventricular Mass by MRI	10	-33.3	23.68	1.406
Left Ventricular Mass by Echo	411	-12.5	63.86	0.196

Alternative proposal :

---GAS: not optimal as PEP due to limited sample size and functional parameters not assessable

----Methods for multiple endpoints (i.e. like the fallback tests for co-primary endpoints and the optimal exact tests for multiple binary endpoints) +

Alternative development Option 3

Fallback tests for co-primary endpoints (histology in several organs + renal fu

Statistical assessment:		Yes	No	Depends, or not fully	Comments		Regul: assessi		Yes	No	Depends or not fully	s, Comments
•	Improves internal validity	Yes					•	Risk of bias and credibility	Contr olled			Parallel double blind design, approp methods for analysis
•	Increases stability of estimates		NO	Dependin unmodifie	g on sample size, which is d		 External validity (discuss) 		YES			Enriched population may decrease e validity, but in this case, with such a mechanistic rationale and with consi
•	Increases sensibility to	YES			ce chances of failure for main with similar sample size, more							results in substrate clearance from ot tissues, not a major issue
	changes			chances to	reach conclusive results.		•	Therapeutic	YES			Improved, allowing comparison with
•	Compliant with predetermin	YES						positioning and comparisons				in more severe populations
	ation						•	 Informative on relevance and clinical impact 	Yes			Improved substantially, since relevan variables may be conclusive from a
•	Consistency (discuss)	YES			er assessment of the ensional nature of the disease							confirmatory perspective
•	Robustness of method (discuss)	YES		As demor	strated in the publication		 Enough information on safety 		YES			At least similar or higher, data in a m advanced (frail) set of patients
•	Protection against type I and II errors (discuss)	YEs		Fallback 1	nethod preserving from errors			Suitable information for risk- benefit balance	YES			Improved substantially

Alternative development Option 3

Fallback tests for co-primary endpoints (histology in several organs + renal func

Practical considerations:	Yes No	Depends, or not fully	Comments	Ethica	l assessment:	Yes	No	Depends, or not fully	Comments
 May reduce sample size requirement s 	No		mple size, determined by y	•	May minimise risks		NO		advanced (frail) set of patients may re susceptible to adverse reactions
 May shorten time to study completion 	No	collect re study du	ration per patient, still too short to elevant clinical outcomes. Overall ration may increase if difficult to ible patients with more severe	•	May maximize access to treatment		NO	the tri active	s to the therapeutic test (I e: entering al and having chances to receive) is reduced, since only severe ts may participate.
• May ease recruitment	No (wors ens)	More str patients Same ch	ict inclusion criteria, less eligible ances to receive placebo, less ess to participate	•	May minimise unnecessary exposure to ineffective treatments or placebo		NO	placeb top, le active	number of patients exposed to to for the same period of time. On ss patients may have acess to the drug in the experimental setting se of strict inclusion criteria
				•	Considers patient input	Yes		QoL a	s one of the primary co-endpoints

- The overall balance of an enriched design is a reduction of uncertainty at the price of slower access to active treatment for mildly diseased patients.
- Using fallback tests for co-primary endpoints is improving the trial at no substantial impact on other assessment parameters, and thus should be recommended as it addresses the main limitations of the actual development

Recommendations

• The development of Fabrazyme in the treatment of Fabry's disease is considered a representative model within the cluster of progressive multidimensional multi organ conditions. Therefore, general considerations on applicability of novel methods can reasonably be suitable options for conditions belonging to the cluster of chronic progressive conditions led by multiple organs/systems.

- Chronic condition with a relatively low progression
- Multidimensional nature and heterogeneous presentation
- Recruitment based on prevalent cases, but low prevalence/high dispersion
- No effective SOC
- Strong scientific rationale based on pathophysiology-MoA
- Good PD marker (clearance of GL3), not fully conclusive of efficacy
- Usually prior data from registries available (not that much in this case)

Recommendations

- In particular, new methodologies aimed to study the multidimensional nature of the condition, like the fallback tests for co-primary endpoints and the optimal exact tests for multiple binary endpoints, are highly recommended in order to generate a more complete and compelling evidence of efficacy and safety and to facilitate generalizability of the study results.
- Parallel designs needed to deal with progression and intersubject variability. Enrichment /stratification may be useful to control heterogeneity and increase sensitivity to changes
- Previous information on the clinical course can be suitable for bayesian approaches and planning of adaptions. However, sample size adaptions and sequential designs, although applicable, may not always increase efficiency if patients are already available for study entry and the use of placebo does not cast major ethical/practical concerns.

Conclusions WP5

The selection of methods guided by clustering allows a pragmatic approach that considers the different options for measuring treatment and clinical context of the condition. As a result methodological requiremente connecting clinical rationale, unmet patients connecting clinical rationale methodologies needs and suitable methodologies

